STRUCTURE OF RORIDIN J, A NEW MACROCYCLIC TRICHOTHECENE FROM *MYROTHECIUM VERRUCARIA*

Sir:

During a continuing program to isolate and chemically modify mycotoxins1), we have isolated and identified a new macrocyclic trichothecene from the fermentation of Myrothecium verrucaria (ATCC #24571).* This new mycotoxin was isolated by a combination of column chromatographies (adsorption and partition) and recrystallizations from an ethyl acetate extract of the fermentation brew. The compound has an Rf value (silica gel) just below verrucarin A (1), a principal trichothecene produced by this fermentation, but can be separated from 1 by careful chromatography on alumina (hexanemethylene chloride eluent). This new compound which we call roridin J (2a) is closely related to roridin H (3) but differs in that 2a possesses an allylic hydroxyl group, and the 2',3' double bond in 2a has the Z configuration rather than E. Roridin J is the first case established where the configuration of the 2',3' double bond in a macrocyclic trichothecene is Z.**

The structure assignment for **2** is based on the following data for **2a** and its acetate, **2b**: roridin J (**2a**): $C_{22}H_{36}O_9$; mp 281 ~ 285° (from dichloro-

methane - hexane); $M^+ 528$; $[\alpha]_{D}^{38} + 21.8^{\circ}$ (CHCl₃); $\gamma_{max}^{KBr} 3535$ (OH), 1715 (C=O), 1645 and 1595 (diene) cm⁻¹; $\lambda_{max}^{EtOH} 261$ nm (log ϵ 4.28); roridin J acetate (**2b**): C₃₁H₃₈O₁₀; mp 230~235^{\circ}C (from dichloromethane - ether); $[\alpha]_{D}^{38} - 40.6^{\circ}$ (CHCl₃); $\gamma_{max}^{KBr} 1745$ and 1715 (C=O's), 1655, 1605 (diene) cm⁻¹.

Inspection of the proton and carbon-13 NMR spectra of roridin J (2a) and roridin J acetate (2b) (see Table 1) reveal them to be structurally quite similar to roridin H (3) yet different from 3 in one fundamental respect. In terms of similarity, 2a contains one more oxygen atom than 3. Formation of a monoacetate derivative 2b mandates that this extra oxygen atom be present in the form of a hydroxyl group. Its location at C-4' is demonstrated by the appearance of H-5' as a 7-Hz doublet in the proton NMR spectrum. In 3 this acetal proton forms the X part of an ABX system.

Roridin J differs significantly from roridin H in that the stereochemistry at C-3' is reversed. Evidence for a Z configuration of the 2',3'double bond in 2 derives from observation of a nuclear OVERHAUSER effect (NOE) for H-2' upon irradiation of the 12'-methyl protons.*** No such NOE was observed for H-2' in 3, leading to the conclusion that H-2' and the 12'methyl group are situated trans to each other in

* This fermentation (200 gal) was carried out under the direction of Mr. RICHARD GEOGHEGAN, Frederick Cancer Research Center, Frederick, Maryland. The details of this procedure will be published in a full paper.

** Previous workers have shown that roridins E, iso-E and H² and vertucarin J³ have the *E* configuration at the 2', 3' double bond. However, although satratoxin H⁴ also has the *E* configuration at the 2', 3' double bond, it nevertheless has the same relative configuration at 2', 3' as does roridin J.

*** The NOE experiment was conducted on a Varian EM390 instrument with one minute intervals between sweeps and at a radiating field strength of 0.01 mG. On resonance frequency was set at 2.3 ppm and, as a check, an off frequency resonance experiment at 9.3 ppm also was conducted; the latter experiment showed no change in the integration for H2', whereas the former gave rise to a 12% enhancement in the integration for H2'.

Position	Roridin H $(3)^{g,h}$	Roridin J (2a)	Roridin J acetate (2b)
2	79.0d (3.8d)	79.2d (3.85d) [5]	79.2d (3.84d) [5]
3	34.8t (b)	34.7t (2.1m)	34.7t (2.1m)
		(2.48dd)[8, 15]	(2.47dd) [8, 15]
4	74.0d (ca. 5.9)	73.9d (6.0dd) [4,8]	73.9d (5.96dd) [4,8]
5	48.9	49.2	49.3
6	43.2	43.3	43.3
7	20.5t (b)	20.4t (2m)	21.0t (1.9m)
8	27.6t (b)	27.6t (2m)	27.6t (1.9m)
9	139.9	140.4	140.4
10	118.6d° (5.42d) [4]	118.6d (5.44d) [5]	118.6d (5.43d) [5]
11	67.6d (3.64)	67.9d (3.63d) [5]	67.9d (3.63d) [5]
12	65.3	65.6	65.5
13	47.3t (2.96AB) [4]	47.9t (2.97AB) [4]	47.9t (2.97AB) [4]
14	7.0q (0.85)	7.4q (0.87)	7.4q (0.87)
15	63.0t (4.15AB) [12]	63.4t (4.21AB) [12]	63.6t (4.21AB) [12
16	22.9q (1.69)	23.3q (1.74)	23.3q (1.72)
1'	166.0	165.9	165.8
2'	119.0d ^c (5.67)	119.8d (5.84d) [1.2]	122.0d (5.91d) [1.2]
3'	154.4	155.4	151.3
4′	47.7t (2.64m)	79.8d (3.85d) [7]	79.7d (4.97d) [7]
5'	100.8d (5.58) [3.5,8]	103.4d (5.24d) [7]	101.4d (5.42d) [7]
6'	81.9d ^d (4.03)	82.3d (3.87)	82.3d (4.02)
7′	134.6d (5.9m)	134.5d (5.8d) [15.5]	134.5d (5.81d) [15.5]
8'	126.2d (7.68dd)	126.1d (7.70dd)	126.0d (7.70dd)
	[11,15.5]	[11.5,15.5]	[11.5,15.5]
9'	142.5d (6.55t) [11]	143.1d (6.54t) [11.5]	143.3d (6.56t) [11.5]
10'	118.9d° (5.79d) [11]	118.9d (5.9d) [11.5]	118.9d (5.88d) [11.5]
11'	166.0	166.2 ^f	166.3 ^f
12'	18.2q ^e (2.27d) [1.5]	13.1q (2.28d) [1.2]	13.3q (2.28d) [1.2]
13'	76.8d ^d (3.65m)	76.5d (3.70q) [6]	76.7d (3.71q) [6]
14′	16.3q ^e (1.32d) [6]	16.0q (1.36d) [6]	15.9q (1.36d) [6]
CH ₃ CO			20.3q (2.1)
CH ₃ CO			169.8

Table 1. ¹³C and ¹H NMR data for roridin H (3), roridin J (2a) and roridin J acetate (2b)^a.

⁴ All spectra were taken in deuteriochloroform solvent. The proton chemical shifts are in parentheses and ^JH, H in brackets. ¹³C NMR spectra were determined on a Varian CFT-20 or FT-80A spectrometer operating at 20 MHz using TMS as an internal reference (0.0 ppm).

The ¹⁸C NMR signals were assigned using ¹H single-frequency off-resonance decoupling techniques, ⁱ chemical shift relations, ⁱ by comparison with literature data, ^h and by comparison of compounds. ¹H NMR spectra were determined on a Varian EM-390 spectrometer operating at 90 MHz in the TMS-locked mode.

^b Not determined.

^{e,d,e} These assignments may be interchanged in each column, though by analogy with 2a and 2b, the assignments appear correct.

- ^f Observed as a narrow doublet in the SFORD spectrum due to coupling to H-9'.
- [#] P. TRAXLER and CH. TAMM: Helv. Chim. Acta 53: 1846 (1970).
- ^h W. BREITENSTEIN and CH. TAMM: Helv. Chim. Acta 58: 1172 (1975).
- ¹ F. W. WEHRLI and T. WIRTHLIN, "Interpretation of Carbon-13 NMR Spectra," Heyden & Son, Ltd., Philadelphia, Pennsylvania, 1978.

this compound²⁾.

Roridin J (2a) exhibits substantial *in vivo* activity against P388 mouse leukemia $(PS)^{5}$. In fact, this is the highest reported PS activity

observed in a macrocyclic trichothecene lacking oxygen functionality (*e.g.*, β -9,10-epoxide or β -8-hydroxyl) in the A-ring⁶). Epoxidation of the 9,10-bond in **2** should lead to a highly PS active compound in analogy with what has been observed with vertucarin A^{1} and roridin A^{7} .

Acknowledgment

This investigation was supported by Grant Number CA 25967-01, awarded by the National Cancer Institute, DHEW and by a Biomedical Research Board Grant, University of Maryland, made available through the U.S. Public Health Service. G. PATRICK STAHLY thanks Gillette Corporation for a fellow ship.

> BRUCE B. JARVIS G. PATRICK STAHLY GOWSALA PAVANASASIVAM

Department of Chemistry University of Maryland College Park, Maryland 20742, U.S.A.

EUGENE P. MAZZOLA

Division of Chemistry & Physics Food and Drug Administration Washington, D.C. 20204, U.S.A.

(Received November 8, 1979)

References

- JARVIS, B. B.; G. P. STAHLY & C. R. CURTIS: Antitumor activity of fungal metabolites: Verrucarin β-9,10-epoxides. Cancer Treat. Rep. 62: 1585~1586, 1978
- 2) (a) MATSUMOTO, M.; H. MINATO, N. UOTANI, K. MATSUMOTO & E. KONDO: New antibiotics

from *Cylindrocarpon* sp. J. Antibiotics 30: 681~682, 1977

(b) MATSUMOTO, M.; H. MINATO, K. TORI & M. UEYAMA: Structures of isororidin E, epoxyisororidin E and epoxy- and diepoxyroridin H, new metabolites isolated from *Cylindrocarpon* species determined by carbon-13 and hydrogen-1 NMR spectroscopy. Revision of C-2': C-3' double bond configuration of the roridin group. Tetrahedron Lett. 1977: 4093~4096, 1977

- 3) TAMM, CH.: private communication.
- EPPLEY, R. M.; E. P. MAZZOLA, R. J. HIGHET & W. J. BAILEY: Structure of satratoxin H, a metabolic of *Stachybotrys atra*. Application of proton and carbon-13 nuclear magnetic resonance. J. Org. Chem. 42: 240~243, 1977
- 5) Compound 2a was tested under the auspices of the U.S. National Cancer Institute: see GERAN, R. I.; N. H. GREENBERG, M. M. MACDONALD, A. M. SCHUMACHER & B. J. ABBOTT: Protocols for Screening Chemicals Agents and Natural Products Against Animal Tumors and Other Biological Systems (Third Edition). Cancer Chemother. Rep., Part 3, 3: 1~103, 1972 Roridin J (2a) was toxic at 10 mg/kg and exhibited the following T/C activities (dose level) in PS: 158 (5 mg/kg), 149 (2.5 mg/kg), 140 (1.25 mg/kg), and 125 (0.62 mg/kg).
- Data made available by J. DOUROS, Head of Natural Products Division of the National Cancer Institute.
- 7) JARVIS, B. B. & G. P. STAHLY: unpublished results.